

US005860957A

United States Patent [19]

Jacobsen et al.

[56]

[11] Patent Number: 5,860,957 [45] Date of Patent: Jan. 19, 1999

[54]	MULTIPATHWAY ELECTRONICALLY- CONTROLLED DRUG DELIVERY SYSTEM		
[75]	Inventors: Stephen C. Jacobsen; Roland Wyatt; Stephen C. Peterson; Tomasz J. Petelenz, all of Salt Lake City, Utah		
[73]	Assignee: Sarcos, Inc., Salt Lake County, Utah		
[21]	Appl. No.: 797,295		
[22]	Filed: Feb. 7, 1997		
[51]	Int. Cl. ⁶ A61M 65/20		
[52]	U.S. Cl. 604/156 ; 604/30; 604/65;		
	604/140		
[58]	Field of Search 604/30, 31, 65–71,		
	604/118, 131, 140, 151, 153, 156, 246		

References Cited

U.S. PATENT DOCUMENTS

3,840,009	10/1974	Michaels et al
	10/19/4	Michaels et al
4,102,332	7/1978	Gessman 604/67 X
4,141,359	2/1979	Jacobsen et al
4,250,878	2/1981	Jacobsen et al
4,312,347	1/1982	Morgoon et al
4,326,522	4/1982	Guerrero et al
4,425,117	1/1984	Hugemann et al
4,439,197	3/1984	Honda et al
4,457,752	7/1984	Vadasz .
4,564,363	1/1986	Bagnall et al
4,968,297	11/1990	Jacobsen et al
5,135,479	8/1992	Sibalis et al 604/20
5,196,002	3/1993	Hanover et al

5,522,798	6/1996	Johnson et al 604/65
5,527,288	6/1996	Gross et al 604/140
5,582,593	12/1996	Hultman 604/65

Primary Examiner—Ronald Stright, Jr. Assistant Examiner—N. Kent Gring

Attorney, Agent, or Firm—Thorpe, North & Western, L.L.P.

[57] ABSTRACT

A low-profile multipathway automatic drug delivery system utilizing a battery powered control pad coupled to a disposable drug storage and delivery system and strapped to a patient's limb or torso. A preprogrammed or on-demand drug administration sequence is input to the control pad. When a drug is to be administered, the control pad ignites a high energy density propellant charge in the drug delivery system. Expanding propellant gas exerts pressure on a drug in a second chamber and forces it from the storage reservoir. Depending upon the type of drug delivery system required for the drug being administered, the propellant will either: (i) force a hypodermic needle into a patient's muscle tissue, propel the drug in the storage container into the needle embedded in the patient, and withdraw the needle; (ii) force the drug from the storage container through a jet nozzle where the drug is injected into subcutaneous tissue; (iii) force the drug from the storage container into a patch for passive transdermal delivery; (iv) force the drug into a patch for iontophoretic transdermal diffusion; or (v) force together two drugs stored separately that are unstable when mixed, and then administer them through one of the methods described in steps (i) to (iv).

42 Claims, 6 Drawing Sheets

